kinetically very inert ruthenium(I1) halo complexes.

Ackaowiedgment. We thank the Deutsche Forschungsgemeinschaft for providing the electrochemistry system and the Fonds der Chemischen Industrie for financial support. We also thank Degussa AG (Hanau), BASF AG (Ludwigshafen), and Hoechst AG (Frankfurt) for the donation of chemicals. Ru(C_6H_5CN)₄Cl₂, 21503-87-7.

Registry No. 2a, 90742-37-3; **2a+,** 90742-46-4; **2b,** 90742-38-4; **2d+,** 90742-49-7; **2e,** 90742-41-9; **2e+,** 90742-50-0; **2f,** 90742-42-0; **2p,** 90742-51-1; **zg,** 90742-43-1; **sa,** 90821-164; **3a+,** 90821-21-9; **3b,** 90821-17-3; **3b+,** 90821-22-0; **3c,** 90821-18-4; **3c+,** 90821-23-1; **3f,** 90821-19-5; **3P,** 90821-24-2; **3n,** 90821-20-8; **4,** 90742-45-3; **2b+,** 90742-47-5; **ZC,** 90742-39-5; **2~+,** 90742-48-6; **Zd,** 90742-40-8;

Contribution from the Department of Chemistry and Ames Laboratory-U.S. DOE,¹ Iowa State University, Ames, Iowa 5001 1

Reactions of Aziridine, Oxirane, and Thiirane with Carbonyl and Thiocarbonyl Ligands in Complexes of Iron, Manganese, and Ruthenium: Syntheses of Cyclic Carbene Compounds

MONO M. SINGH2 and ROBERT **J.** ANGELICI*

Received August 1, 1983

I. SINGH² and ROBERT J. ANGELICI^{*}
August 1, 1983
The 3-membered heterocycles aziridine (HNCH₂CH₂) and oxirane (OCH₂CH₂) react with one CO group in each of the . cationic carbonyl complexes $Cp(OC)_3Fe^+, Cp(OC)_3Ru^+, Cp(OC)_2(ON)Mn^+,$ and $Cp(OC)_2(Ph_3P)Fe^+$ in the presence of a halide ion at 25 °C or below to form the corresponding 5-membered cyclic amino oxy $M=COCH_2CH_2NH^+$ and dioxy $M=COCH₂CH₂O⁺$ carbene complexes (M = Cp(OC)₂Fe, Cp(OC)₂Ru, Cp(OC)(ON)Mn, Cp(OC)(Ph₃P)Fe). Aziridine and thiirane (SCH_2CH_2) also react with the CS ligand in the mixed carbonyl thiocarbonyl complex Cp(OC)₂(CS)Fe⁺ to give the corresponding aminothiocarbene $(M=CSCH_2CH_2NH)$ and dithiocarbene $(M=CSCH_2CH_2S)$ products. In the reactions $M-C=Z^+ + YCH_2CH_2 \times M=CZCH_2CH_2Y^+(Z=0, Y=NH \text{ and } O; Z=S, Y=NH \text{ and } S)$, the role of the halide ion **X**⁻ as a catalyst has been demonstrated. Prolonged reactions of oxirane with $Cp(OC)₂LM⁺ (M = Fe,$ L = CO; M = Mn, L = NO) in the presence of Br⁻ ion generate bis(dioxycarbene) derivatives CpLM(COCH₂CH₂O)₂⁺. Mechanisms for these reactions have been proposed. Reactions of $Cp(OC)_2LM^+(M = Fe, L = CO; M = Mn, L = NO)$ with $[BrCH_2CH_2CH_2NH_3]Br$ and the bases azetidine $(HNCH_2CH_2CH_2)$ or oxirane and Br⁻ yield 6-membered aminooxycarbene compounds Cp(OC)LM(COCH₂CH₂CH₂NH)⁺. The basic behavior of oxiranes R-CHCH₂O in the presence of a halide catalyst is demonstrated by the isolation of the 5-membered dioxycarbene compound Cp(CO)₂Fe(COCH₂CH₂O)⁺ from the reaction of RCHCH₂O with C_P(OC)₃Fe⁺ in BrCH₂CH₂OH. IR and ¹H and ¹³C NMR spectra of the compounds are discussed.
 ion

has been considerable interest in the reactions of the $LMH + \overline{YCH_2CH_2} \rightarrow LM-C$ are discussed. of Aziridine, Oxirano

s of Iron, Mangano

s

NGH² and ROBERT J. AN

st 1, 1983

-membered heterocycles aziric

carbonyl complexes Cp(O

de ion at 25 °C or below to f

cOCH₂CH₂O⁺ carbene comp

hiirane (SCH₂CH₂ *Inorg. Chem.* 1984, 23, 2691–2698

We thank the Doutsche Forschungsge-

26. $(9742.497.497.49.52.$ *Inorg. Chem.* 1984, 23, 2691–2698

(II) halo complexes.
 Registry No. 2a. 90742-37-3; 2a.⁴, 90742-46-4; 2

the Deutsche Forchumesge-

2a*, 90742-47-5; 2e. 90742-39-5; 2e. 90742-49-6; 2

the four financial support. We Chem. 1984, 23, 2691–2698

S. Registry No. 2a, 90742-37-3; 2a*, 90742-46-4; 2b, 90742-38-4;
 $2b^4$, 90742-47-5; 2c, 90742-39-5; 2c; 90742-36; 2d, 90742-44-8;

and the 2r*, 90742-47-5; 2c, 90742-41-9; 2a*, 90742-45-6; 2d, om the Department of Chemistry and Ames Laboratory—U

lowa State University, Ames, Iov
 ith Carbonyl and Thiocarbonyl Ligands
 ith Carbonyl and Thiocarbonyl Ligands
 ifter Carbons (CCH₂CH₂) react with one CO grou Manganese, and Ruthenium: Syn

Manganese, and Ruthenium: Syn

ERT J. ANGELICI*

cocycles aziridine (HNCH₂CH₂) and oxirane ((

olexes Cp(OC)₃Fe⁺, Cp(OC)₃Ru⁺, Cp(OC)₂(O

or below to form the corresponding 5-Let $M = CZCH_2CH_2Y$ and announcement (in exactly crips) produces.
 $\begin{aligned}\n\mathbf{L} &= CZCH_2CH_2Y^+ (Z = 0, Y = NH \text{ and } O; Z = S, Y = NH \text{ and } S), \\
\text{been demonstrated. Prolonged reactions of oxiran with } Cp(OC)_2LM^+ (M \text{ research})\n\end{aligned}$ $\begin{aligned}\n\text{Hence, the first term is given by the following equation:\n $\begin{aligned}\n\mathbf{L} &= \mathbf{L} \cdot \mathbf{L} \cdot$$ The presence of
 $_2NH^+$ and dioxy
 $_2NH^+$ and dioxy
 $_2NF^+$ to
 $_2NF^+$ to
 $_2NH^+$ ($M = Fe$,
 $_2NH^+$ ($M = Fe$,
 $_2NH^+$ ($_2NH^+$)
 $_2NH^+$
 $_2NH^+$ and $_2NH^+$
 $_2NH^+$
 $_2NH^+$
 $_2NH^+$
 $_2NH^+$
 $_2NH^+$ Constant the corresponding 5-r

carbene complexes (M = Cp(OC)₂Fe, C

CH₂) also react with the CS ligand in th

ng aminothiccarbene (M=CSCH₂CH₂Y⁺
 \downarrow + \downarrow YCH₂CH₂ $\stackrel{X}{\sim}$ M=CZCH₂CH₂Y⁺

as a ca The same of ${}_{2}C H_{2} \times M = CZCH_{2}CH_{2}Y^{+}(Z = 0, 0)$

yst has been demonstrated. Prolonged is

in the presence of Br⁻ ion generate bis(dis have been proposed. Reactions of Cp(

and the bases azetidine (HNCH₂CH₂CH₂C)

Introduction

There has been considerable interest in the reactions of the 3-membered heterocycles YCH_2CH_2 , where Y = NH (aziridine), 0 (oxirane), and **S** (thiirane), with transition-metal complexes. Simple coordination of aziridine through the N atom to metal ions has been observed.³ One O-bonded oxirane compound, namely $[Cp(OC)_3Mo(OCH_2CH_2)]^+$, was also reported.⁴ Aziridine and oxirane are also known to react with metal hydrido carbonyls^{5,6} or with carbonyl anions^{5,7} according to

- (1) Ames Laboratory is operated for the **US.** Department *of* Energy by Iowa State University under Contract No. W-7405-Eng-82. This re- search was supported by the Office of Basic Energy Sciences, Chemical Sciences Division.
- **(2) On** leave from Dibrugarh University, Dibrugarh, Assam, India. (3) Scherzer, J.; Phillips, **P.** K.; Clapp, L. B.; Edwards, J. 0. *Inorg. Chem.*
- **1966,** *5,* 845.
- (4) Scholter, K.; Beck, W. Z. Naturforsch., B: Anorg. Chem., Org. Chem. **1980,** *358,985.*
- **(5)** Heck, R. F. *J. Am. Chem.* **SOC. 1963,** *85,* 1460.
- (6) Beck, W.; Danzer, W.; Höfer, R. Angew. Chem., Int. Ed. Engl. 1973, *12,* 77.
- (7) Giering, W. P.; Rosenblum, M.; Tancrcde, J. *J.* Am. *Chem.* **SOC. 1972,** *94,* 7170.
- **(8)** Rakowski Dubois, **M.;** Haltiwanger, R. C.; Miller, D. J.; Glatzmaier, G. *J. Am. Chem.* **SOC. 1979,** *101,* 5245.

$$
LMH + \overleftrightarrow{YCH_2CH_2} \rightarrow LM-CH_2CH_2YH
$$

LMH =
Co(CO)₄H, Mn(CO)₅H, CpMo(CO)₃H, CpW(CO)₃H
LM⁻ + $\overleftrightarrow{YCH_2CH_2} \rightarrow LM-CH_2CH_2Y$ ⁻

$$
LM^{-} + \text{YCH}_{2}CH_{2} \rightarrow LM-CH_{2}CH_{2}Y^{-}
$$

$$
LM^{-} = Co(CO)_{4}^{-}, CpFe(CO)_{2}^{-}
$$

Thiirane with hydrido carbonyls,^{8,9} however, undergoes "de-LM⁻ = 0
with hydrido
ion"
SCH₂CH₂ →

sulfurization"
\nLMH +
$$
SCH_2CH_2 \rightarrow
$$

\nLM-SH + (LM)₂S + LM(SCH₂CH₂S)₂ML

In these and other reactions of metal carbonyl complexes,⁴ the heterocycles $YCH₂CH₂$ are observed to react at the metal centers. Recently, studies of the reactivity of CO ligands in metal carbonyl complexes have been stimulated by the search for catalytic reactions that convert CO into hydrocarbons, alcohols, and other organic products. Taking advantage of Hereional C_{P(CO)2} (COC)₂ (C_P(CO)₂ (C_P(CO)₂ (C_P(CO)₂ (CP)² (CP)² (C LMH + YCH₂CH₂ \rightarrow LM-CH₂CH₂YH

MH =

Co(CO)₄H, Mn(CO)₅H, CpMo(CO)₃H, CpW(CO)₃H

LM⁻ + YCH₂CH₂ \rightarrow LM-CH₂CH₂Y⁻

LM⁻ = Co(CO)₄⁻, CpFe(CO)₂⁻

cMH + SCH₂CH₂ \rightarrow

LM-SH + (LM)₂S +

the tendency of highly strained 3-membered rings YCH_2CH_2

Ber. **1982,** *115,* 1682.

to undergo ring opening and using the known reactivity of electrophilic CO or CS ligands, we sought to initiate, under suitable catalytic conditions, the reaction of heterocycles at the carbon center of carbonyl or thiocarbonyl ligands. We have found that, indeed, such novel reactions do occur in the presence of a halide ion catalyst and that these reactions lead to the formation of cyclic carbene compounds in high yields. In this paper, we describe the results of studies of these reactions and the spectroscopic (IR and **'H** and **I3C** NMR) characterization of the reaction products. Preliminary results of this study have been published as a communication.'0

Experimental Section

General Information. Unless otherwise mentioned, reagent grade chemicals were used without further purification. All reactions and manipulations were performed under N_2 by using standard Schlenk techniques. Methylene chloride was dried over CaH, and distilled under N_2 . Tetrahydrofuran (THF) was distilled from sodium benzophenone ketyl under N_2 . Predried (CaH₂) acetonitrile was distilled first from anhydrous P_2O_5 and then from CaH_2 before final collection under N₂. Acetone was dried and distilled from P_2O_5 under N₂ before use. Diethyl ether predried with CaH₂ was distilled from sodium benzophenone ketyl under N_2 . Hexane was distilled from CaH₂ and stored under N_2 over molecular sieves, type 4\AA . Infrared spectra were recorded on Perkin-Elmer 281 and 681 instruments. 'H and I3C NMR spectra were recorded on a JEOL FX-90Q spectrometer; Cr(acac), was added to the solutions to reduce ¹³C data collection time. Tetramethylsilane was employed as the internal standard for the 'H and ¹³C spectra. Melting points (uncorrected) of the compounds were determined in air on a Thomas hot-stage apparatus. As aziridine, oxirane, and thiirane are toxic substances, all preparations were performed in an efficient hood. sophenoe skelp index The control (Cali) assetsmittele was distilled in 12.44, N. 32.4 Ib was also prepare a
significant method (Calification Fig. 2014). The control of the control of the control of the control of the contr

Starting Complexes. The compounds $[Cp(OC)_2Fe(CZ)]CF_3SO_3$ were prepared from $[Cp(OC)_2FeC(Z)ZMe]$ ($Z = O$, *S*) by known methods¹¹⁻¹³ using CF_3SO_3H in benzene. They, as well as [Cp- $(OC)_3Ru]CF_3SO_3$, were recrystallized from acetone-ether before use. Other compounds, $[Cp(OC)₂(ON)Mn]PF₆,¹⁴ [Cp(OC)₂(Ph₃P)-$ Fe]⁺,^{15,16} and [Cp(OC)₃Ru]PF₆,¹⁷ were all prepared according to literature methods. The salt $[Cp(OC)_2(Ph_3P)\overline{Fe}]$ CF₃SO₃ was formed by the reaction of $[Cp(OC),Fe]CF₃SO₃(0.17 g, 0.48 mmol)$ with a stoichiometric amount of PPh, (0.13 *g,* 0.49 mmol) in acetone for 20 min followed by evaporation and recrystallization from CH2C1,-Et20; yield 0.21 **g** (75%). This compound was characterized by its IR and ¹H and ¹³C NMR spectra.^{15,16}

 $[Cp(OC),Fe]PF₆$. Though mentioned in the literature,¹⁸ details of this preparative method were not given. The dimer $\mathrm{Cp}_2(\mathrm{OC})_4\mathrm{Fe}_2$ (0.50 **g**, 1.4 mmol) was dissolved in 20 mL of 1:1 CH₂Cl₂:CH₃CN. A rapid stream of CO gas was bubbled through the solution, and excess $(\sim1.5$ **g)** NOPF, was added in several portions. The solution color changed from deep brown to yellow brown, and yellow crystals of [Cp- (OC) ₃Fe]PF₆ began to precipitate. After removal of the solvents, the residue was washed with ether, extracted with acetone, filtered in air, and precipitated with Et_2O as yellow crystals at -20 °C. The compound was characterized by IR and NMR spectra;¹¹ yield 0.78

Syntheses of Complexes. $[Cp(OC)_2Fe(COCH_2CH_2NH)]PF_6$ (Ia). Aziridine (0.05 mL, 1 mmol) was added with a microsyringe to a solution of 0.35 **g** (1.0 mmol) of [Cp(OC),Fe]CF,SO, and 0.20 **g** (0.98 mmol) of $[BrCH₂CH₂NH₃]Br$ in 20 mL of CH₃CN. After the mixture stirred for 10 min, excess KPF_6 (\sim 2 g) was added to the mixture, which was stirred for an additional **5** min. The solvent was then removed under vacuum, and the residue was washed twice with 2-mL portions of Et_2O . It was then extracted with 20 mL of CH_2Cl_2 and filtered through anhydrous MgS04, and the volume of the light

- (10) Singh, **M. M.;** Angelici, R. J. *Angew. Chem., In?. Ed. Engl.* **1983,** *22,* **¹***A-4* **I.,.,.**
- (11) Busetto, L.; Angelici, R. J. *Inorg. Chim. Acru* **1968, 2,** 391.
- (12) Quick, M. H.; Angelici, R. J. J. Organomet. Chem. 1978, 160, 231.
(13) Dombek, B. D.; Angelici, R. J. Inorg. Synth. 1977, 17, 100.
(14) Connelly, N. G. Inorg. Synth. 1974, 15, 91.
-
-
- (15) Dombek, B. D.; Angelici, R. J. *Inorg. Chim. Acta* 1973, 7, 345.
(16) Johnson, B. V.; Ouseph, P. J.; Hsieh, J. S.; Steinmetz, A. L.; Shade, J. E. *Inorg. Chem.* 1979, 18, 1796.
-
- (17) Kruse, A. **E.;** Angelici, R. J. *J. Orgunomet. Chem.* **1970,** *24,* 231. (18) Reimann, R. H.; Singleton, E. *J. Orgunomet. Chem.* **1971,** *32,* C44.

yellow filtrate was reduced under vacuum until crystallization began. To this solution was added 10 mL of $Et₂O$, and the solution was allowed to stand at -20 °C overnight. Cream yellow needles formed and were collected, washed with $Et₂O$, and finally vacuum dried: yield 0.40 g (99%); mp 134 °C. Anal. Calcd for $C_{10}H_{10}F_6NO_3PFe$: C, 30.56; H, 2.56; N, 3.56. Found: C, 31.00; H, 2.78; N, 3.78. Using 0.22 g (1.0 mmol) of $[BrCH₂CH₂CH₂NH₃]Br instead of $[BrCH₂$ -$ CH2NH3]Br in the above procedure yielded 0.35 **g** (89%) of Ia from 0.35 **g** (1.0 mmol) of [Cp(OC),Fe]CF,SO,. When the same method was used but with 0.18 g (1.0 mmol) of $[Et₃NH]Br$ in place of $[BrCH_2CH_2NH_3]Br$, 0.25 g $(64%)$ of Ia was isolated.

 $[Cp({\bf OC})_2Ru({\bf COCH}_2CH_2NH)]PF_6$ (Ib). The same procedure as for the preparation of Ia was followed. The metathesis with KPF₆ was not required. Starting from 0.20 **g** (0.57 mmol) of [Cp- $(OC)_3Ru]P\dot{F}_6$, 0.03 mL (0.6 mmol) of aziridine, and 0.10 g (0.50) mmol) of [BrCH₂CH₂NH₃]Br, 0.19 g (87%) of the colorless snow white crystalline product was obtained; mp 119 °C. Anal. Calcd for $C_{10}H_{10}F_6NO_3PRu$: C, 27.41; H, 2.30; N, 3.20. Found: C, 27.74; H, 2.44; N, 3.24. Ib was also prepared from $[Cp(OC), Ru]CF_3SO_3$ by using KPF_6 for anion exchange.

 $[Cp(OC)(ON)Mn(COCH,CH,NH)]PF₆$ **(Ic).** The same method of preparation as for Ia was followed. The anion exchange with KPF_6 was not required. From 0.35 g (1.0 mmol) of $[Cp(OC)₂(ON)Mn]PF₆$ was obtained 0.34 **g** (85%) of orange yellow crystals of IC, mp 136 °C. Anal. Calcd for $C_9H_{10}F_6N_2O_3PMn$: C, 27.43; H, 2.56; N, 7.10. Found: C, 27.40; H, 2.48; N, 7.20.

 $[Cp(OC)(Ph_3P)Fe(COCH_2CH_2NH)]PF_6$ (Id). With the use of a microsyringe, 0.03 mL (0.6 mmol) of aziridine was added to a stirring mixture of 0.26 g (0.50 mmol) of $[Cp(OC)₂(Ph₃P)Fe]BF₄$ and 0.10 g (0.50 mmol) of $[BrCH_2CH_2NH_3]Br$ in 10 mL of CH₃CN. The bromide salt disappeared during the reaction, but a whitish sticky residue formed in the reaction flask. The progress of the reaction was monitored by IR spectroscopy, and after 1.5 h an additional amount of aziridine (0.03 mL) was introduced. After 6 h the disappearance of ν (CO) bands at 2062 and 2017 cm⁻¹ due to the starting complex and the simultaneous appearance of a strong band at 1980 cm⁻¹ indicated that the reaction was complete. Addition of excess aziridine accelerated the reaction. The solution was evaporated to dryness under reduced pressure, and the residue was extracted with 20 mL of CH₃CN and filtered. The filtrate was treated with \sim 1 *^g*of KPF6 for anion exchange. After evaporation, the yellow residue was extracted with CH_2Cl_2 ; the solution was filtered and evaporated to 2 mL, and crystallization was induced by adding Et₂O at -20 °C. Yellow flaky crystals were collected the next day, washed with $Et₂O$, and dried under vacuum: yield 0.23 g (70%); mp 228 °C. Anal. Calcd for $C_{27}H_{25}F_6NO_2P_2Fe$: C, 51.71; H, 4.02; N, 2.23. Found: C, 51.74; H, 3.94; N, 2.09. This compound was also prepared from [Cp- $(OC)_2(Ph_3P)Fe]CF_3SO_3$ by following the same method.

[Cp(OC)₂Fe(COCH₂CH₂NH)]CF₃SO₃ (Ie). To an ice-cold stirring mixture of 8 mL of oxirane and 0.21 g (1.0 mmol) of [BrCH₂C- $H_2NH_3]$ Br was added 0.35 g (1.0 mmol) of $[Cp(OC),Fe]CF_3SO_3$. The mixture was stirred at 0° C (ice bath) for 45 min and was then taken to dryness under vacuum. The residue was washed once with $Et₂O$ and then extracted with $CH₂Cl₂$. The solution was filtered through anhydrous MgS04, the filtrate was concentrated under vacuum, $Et₂O$ was added, and the solution was allowed to stand at -20 °C overnight when light yellow crystals of Ie precipitated; yield 0.35 g (90%). Anal. Calcd for $C_{11}H_{10}F_3NO_6SFe$: C, 33.27; H, 2.54; N, 3.53. Found: C, 33.22; H, 2.48; N, 3.40. When 3 mL of thiirane instead of oxirane in the above procedure, 0.35 **g** (1.0 mmol) of $[Cp(OC)₃Fe]CF₃SO₃$, and 0.20 $g(0.98 \text{ mmol})$ of $[BrCH₂CH₂NH₃]Br$ were used and the reaction mixture was treated with KPF_6 for the exchange of the anion, a 0.35 g (90%) yield of Ia was obtained.

 $[Cp({\rm OC})_2Fe(HNCH_2CH_2)]PF_6$ (If). To a solution of 0.06 mL (1 mmol) of aziridine in 10 mL of CH₃CN was added 0.35 g (1.0 mmol) of $[Cp(OC)$ ₃Fe $]CF_3SO_3$. Immediately, evolution of gas was noticed, and a brown solution was obtained. An excess of KPF_6 (\sim 2 g) was added, and the mixture was stirred for *5* min. The solution was taken to dryness, and the residue was washed several times with $Et₂O$ and then extracted with 20 mL of CH_2Cl_2 . After filtering through anhydrous MgS04, the brown solution (a difference from the filtrate of Ia) was concentrated to about 2 mL, and 10 mL of Et_2O was added carefully to form two layers. When the mixture was allowed to stand for several days at -20 °C, yellow needlelike crystals formed: yield 0.24 g (66%) ; mp 180 °C dec. Anal. Calcd for $C_9H_{10}F_6NO_2$ PFe: C, 29.62; H, 2.76; N, 3.78. Found: C, 29.89; H, 2.44; N, 3.77.

[Cp(OC)2Fe(CSCH2CH2NH)]PF6 (Ig). Aziridine (0.05 mL, 1 mmol) was added to a stirring solution of 0.37 **g** (1.0 mmol) of $[Cp(OC)₂(CS)Fe]CF₃SO₃$ and 0.21 $g(1.0 \text{ mmol})$ of $[BrCH₂CH₂N H_3$ Br in 40 mL of THF. After 2 min, about 2 g of KPF₆ was added, and the mixture was stirred for an additional 10 min. The volatiles were removed under reduced pressure, the residue was extracted with 20 mL of CH_2Cl_2 and filtered through anhydrous MgSO₄, and the $CH₂Cl₂$ filtrate was evaporated to an oil. It was dissolved in 1 mL of acetone, and Et_2O was added slowly to form two layers. Slow diffusion of Et_2O overnight at -20 °C induced the formation of light yellow-brown crystals of the product, yield 0.34 g (83%). This aminothiocarbene compound was characterized by its IR and 'H and ¹³C NMR spectra.¹⁹ blexes of Fe, Mn, and Ru

at -20 °C, yellow needlelike crystals formed: yield

p 180 °C dec. Anal. Calcd for C₉H₁₀F₆NO₂PFe: mmol) of

6; N, 3.78. Found: C, 29.89; H, 2.44; N, 3.77. of oxirane
 ESCH₂CH₂NH)PF were considered and

20 mL of CH₂Cl₂ filtrate was

of acetone, and Et

diffusion of Et₂O o

yellow-brown cryst

inothiocarbene considered

¹³C NMR spectra.

<u>[Cp(CO)</u>₂Fe(CC

H₂CH₂CH₂ (0.07

(1.0 mmol) of [C

l NMR spectra.¹⁹
[Cp(CO)₂Fe(COCH₂CH₂CH₂NH)]PF₆ (IIa). Azetidine, HNC- $H_2CH_2CH_2$ (0.07 mL, 1 mmol), was added to a solution of 0.35 g (1.0 mmol) of $[Cp(OC)_3Fe]CF_3SO_3$ in 20 mL of CH_3CN containing 0.22 g (1.0 mmol) of [BrCH₂CH₂CH₂NH₃]Br. After 20 min of stirring, another portion of 0.07 mL (1 mmol) of azetidine was added and the mixture was stirred for 2 h. Then, \sim 2 g of KPF₆ was added. After the mixture was stirred for 10 min, the solvents were removed, and the residue was washed with $Et₂O$ several times. Extraction with $CH₂Cl₂$ and subsequent evaporation produced an oil in 90% yield. When it was allowed to stand under $Et₂O$ for 4 weeks, the oil changed to long yellow-brown needlelike crystals: yield 0.22 **g** (54%); mp 116 °C. Anal. Calcd for $C_{11}H_{12}F_6NO_3$ PFe: C, 32.46; H, 2.97; N, 3.44. Found: C, 32.84; H, 3.20; N, 3.69.

The same compound was also prepared in 30% yield by using oxirane (8 mL) and $[BrCH_2CH_2CH_2NH_3]Br$ (0.44 g, 2.0 mmol) at 0 °C by a method analogous to that described for the preparation of Ie from oxirane and [BrCH₂CH₂NH₃]Br. These crystals gave the same IR and NMR spectra as IIa. .

 $[Cp(OC)(ON)Mn(COCH₂CH₂CH₂NH)]PF₆$ (**IIb**). The procedure used for the preparation of Ie was employed. When 8 mL of oxirane, 0.24 g (1.1 mmol) of $[BrCH_2CH_2CH_2NH_3]Br$, and 0.33 g (0.94 mmol) of $[Cp(OC)_2(ON)Mn]PF_6$ were used, 0.20 g (52%) of IIb was obtained as brown-red crystals, mp 105 °C. Anal. Calcd for $C_{10}H_{12}F_6N_2O_3PMn$: C, 29.43; H, 2.96; N, 6.86. Found: C, 29.57; H, 3.16; N, 6.64.

 $[Cp({OC})_2Fe(\overline{C OCH_2CH_2O})]PF_6$ (IIIa). To a cooled (0 °C) sus-
pension of 0.19 g (0.53 mmol) of $[Cp({OC})_3Fe]CF_3SO_3$ in 1 mL of BrCH₂CH₂OH was added 0.06 g (0.5 mmol) of NaBr followed by 4 mL of oxirane at 0 $^{\circ}$ C. The mixture was stirred for 3 h at 0 $^{\circ}$ C After the removal of volatiles under reduced pressure, 5 mL of $CH₃CN$ was added followed by excess KPF₆ (\sim 2 g). After stirring for 15 min, the solution was evaporated to dryness, and the residue was washed once with $1-2$ mL of Et₂O and extracted with 30 mL of CH_2Cl_2 . After the solution was filtered through anhydrous MgSO₄, the volume was reduced to one-tenth, and Et_2O was added dropwise. Cooling of this mixture at -20 °C overnight produced the light yellow crystalline compound: yield 0.17 g (81%); mp 123-126 °C. Anal. Calcd for $C_{10}H_9F_6O_4PFe$: C, 30.40; H, 2.30. Found: C, 30.85; H, 2.30. The same compound was also prepareJ similarly but replacing 2-bromoethanol with 3-bromopropanol. **Thus,** with 0.19 **g** (0.54 mmol) of $[Cp(OC),Fe]CF₃SO₃$, 3 mL of oxirane, 1.5 mL of $BrCH₂CH₂Cl₂$ H20H, and 0.10 **g** (0.97 mmol) of NaBr, 0.17 **g** of IIIa (yield 80%) was obtained. Repeating the procedure using NaCl (0.06 g, 1 mmol) and 1 mL of ClCH₂CH₂OH instead of NaBr and BrCH₂CH₂OH and starting with 0.36 **g** (1.0 mmol) of [Cp(OC)3Fe]CF3S03, 0.24 **g** (60%) of IIIa was isolated. Similarly, when NaBr was replaced by NaI (0.29 g , 0.96 mmol) in this method, 0.14 g (18%) of IIIa was produced from 0.7 **g** (2 mmol) of $[Cp(OC)_3Fe]CF_3SO_3$ and 2 mL of BrCH₂CH₂OH.

[Cp(OC),Ru(COCH2CH20)]PF6 (IIIb). The same procedure as for IIIa was employed. When 0.10 **g** (0.25 mmol) of [Cp- $(OC)_3Ru]CF_3SO_3$ was stirred for 30 min with 4 mL of oxirane in 1 mL of BrCH2CH20H containing 0.10 **g** (0.97 mmol) of NaBr, followed by treatment with \sim 1 g of KPF₆ in CH₃CN, 0.080 g (73%) of IIIb was isolated as colorless long needles, mp 125 °C. Anal. Calcd for C₁₀H₉F₆O₄PRu: C, 27.35; H, 2.06. Found: C, 27.44; H, 2.10.

 $[Cp(OC)(ON)Mn(COCH₂CH₂O)]PF₆$ (IIIc). With 0.20 **g** (0.57) mmol) of $[Cp(OC)_2(ON)Mn]PF_6$, 2 mL of BrCH₂CH₂OH, 3 mL of oxirane, and 0.05 g (\sim 0.5 mmol) of NaBr and from the same procedure as for the preparation of IIIa but without employing KPF_6 for metathesis, 0.18 **g** (80%) of orange-yellow crystals were obtained; mp 128 °C. Anal. Calcd for C₉H₉F₆NO₄PMn: C, 27.36; H, 2.30; N, 3.54. Found: C, 27.43; H, 2.40; N, 3.51.

 $[Cp(OC)(Ph_3P)Fe(COCH_2CH_2O)]PF_6$ (IIId). Similarly, with 0.21 **g** (0.40 mol) of [Cp(Oc),(Ph,P)Fe]BF,, 0.06 g (0.6 mmol) of NaBr, 2 mL of BrCH₂CH₂OH (or BrCH₂CH₂CH₂OH), and 8 mL of oxirane and when KPF_6 in CH₃CN was used for anion exchange, IIId was isolated as light yellow crystals: yield 0.21 g (84%); mp 210 °C. Anal. Calcd for $C_{27}H_{24}F_6O_3P_2Fe$: C, 51.61; H, 3.85. Found: C, 51.53; H, 4.02. The same compound was also prepared from $[Cp(OC)₂ (Ph_3P)Fe] CF_3SO_3$ by following the same procedure and employing KPF_6 for anion metathesis. The IR and NMR data were used to identify the compounds as IIId. Chemistry, Vol. 23, No. 17, 1984 2693

COCH₂CH₂O)]PF₆ (IIIc). With 0.20 g (0.57

DN)Mn]PF₆, 2 mL of BrCH₂CH₂OH, 3 mL

g (~0.5 mmol) of NaBr and from the same

eparation of IIIa but without employing KPF₆

(8 0.18 g (80%) of orange-yellomal. Calcd for C₉H₉F₆NO₄
d: C, 27.43; H, 2.40; N, 3.
P)Fe(COCH₂CH₂O)JPF₆ (I
f [Cp(OC)₂(Ph₃P)Fe]BF₄, 0.
CH₂OH (or BrCH₂CH₂CH₂CH₂6, in CH₃CN was used for a
yello

[Cp(OC)Fe(COCH2CH20)2]PF6 (IIIe). Through a suspension of 0.07 g (0.2 mmol) of IIIa in 1 mL of $BrCH_2CH_2OH$ containing 0.02 **g** (0.2 mmol) of NaBr were **passed** oxirane vapors at room temperature for 24 h. The solvent was removed under vacuum, and excess $Et₂O$ **was** added to the brown mass. After the mixture was allowed to stand overnight at -20 °C, the Et₂O was decanted off, and the residue was extracted with CH_2Cl_2 . The CH_2Cl_2 solution was concentrated, Et_2O was added, and the light yellow crystalline compound was obtained upon standing at -20 °C overnight: yield 0.020 g (26%); mp 180 °C. Anal. Calcd for $C_{12}H_{13}F_6O_5PFe$: C, 32.90; H, 2.99. Found: C, 32.13; H, 3.02. nic Chemistry, $Vol. 23$, $N\omega. 17$, 1984 **2693**

Mn(COCH₂CH₂O))**PF**₆ (IIIe). With 0.20 g (0.57

C₂(ON)Mn]PF₆ 2 mL of BrCH₂CH₂OH, 3 mL

0.005 g (\sim 0.5 mmol) of NaBr and from the same

18 g (80%) of orange-

 $[CP(ON)Mn(COCH₂CH₂O)₂]PF₆$ (IIIf). The initial steps in this preparation were the same as for the synthesis of IIIc with the exception that the stirring of the reaction mixture was continued until no *v(C0)* bands were seen in the IR spectrum of the mixture. Oxirane was added from time to time to replace that which evaporated. Following the crystallization procedure for IIIa, 0.12 **g** (27%) of orange-brown crystals were obtained from 0.35 **g** (1.0 mmol) of $[Cp(OC)₂(ON)Mn]PF₆$. This compound was characterized by its IR and 1 H and 13 C NMR spectra.²

 $[Cp(OC)_2Fe(CSCH_2CH_2S)$ PF_6 (IV). To a stirring solution of 0.37 **g** (1.0 mmol) of $[Cp(OC)_2(CS)Fe]CF_3SO_3$ in 10 mL of CH_3CN containing 0.10 g $(0.97$ mmol) of NaBr was added 0.11 mL $(2.0$ mmol) of thiirane. Stirring was continued for 2 h. An examination of the IR spectrum of the mixture at this stage did not reveal any ν (CO) bands due to the starting complex. Then, \sim 2 g of KPF₆ was added, and after the mixture was stirred for an additional 20 min, the solvent was evaporated. The residue was washed with Et_2O , extracted with $CH₂Cl₂$, and filtered through anhydrous MgSO₄. The filtrate was concentrated, and Et_2O was added very carefully so that no oil separated out. This mixture on standing at -20 °C for 1 week gave yellow crystals: yield 0.32 g (75%); mp 87 °C. The compound was recrystallized from a $CH_2Cl_2-Et_2O$ mixture at -20 °C. This compound was characterized by its IR and H and H^3C NMR spectra.²¹

Results and Discussion

Reactions of Aziridine with Metal Carbonyl Cations. Syntheses of 5-Membered Aminooxycarbene Complexes. Aziridine is observed to react (eq 1) with one CO group in

$$
M-C = 0^+ + HN \left(\frac{Br^2}{25 \text{ }\text{ }K} \text{ } M = C \left(\bigvee_{N=1}^{O} \right)^+
$$
\n
$$
Ia, M = Cp(OC)_2Fe
$$
\n
$$
b, M = Cp(OC)_2Ru
$$
\n
$$
c, M = Cp(OC)(ON)Mn
$$
\n
$$
d, M = Cp(OC)(Ph_sP)Fe
$$
\n(1)

each of the cationic carbonyl complexes in acetonitrile solvent in the presence **of** a bromide salt at room temperature to form the corresponding cyclic aminooxycarbene compounds (I) in high yields (70–99%). The products Ia,b are prepared from the corresponding $Cp(OC)_{3}M^{+}$ cations (M = Fe, Ru) and are

⁽¹⁹⁾ McCormick, F. B.; Angelici, R. J. *Inorg. Chem.* **1979,** *18,* 1231. (21) **McCormick, F. B.; Angelici, R. J.** *Inorg. Chem.* **1981,** *20,* 11 11.

⁽²⁰⁾ Motschi, H.; Angelici, R. J. *Organometallics* **1982,** *1,* **343.**

isolated as highly crystalline air-stable PF_6^- salts via anion exchange with excess KPF_6 . The $CF_3SO_3^-$ salt of Ia²² has also been prepared as a yellow crystalline compound (Ie) in equally good yields **(90%)** by a different route (vide infra). The use of salts with different anions such as BF_4^- , PF_6^- , or $CF_3SO_3^$ do not seem to affect noticeably the overall yields of the end products. Highest isolated yields of Ia,b have been obtained by reacting for **5-10 min** equimolar quantities of aziridine and $[BrCH₂CH₂NH₃]$ Br as the bromide salt in reaction 1.

The preparations of Ia by other methods^{19,20} have been described. However, the present method affords very high yields of Ia in a considerably shorter reaction time. Since Ia may be prepared from the reaction of $Cp(OC)$ ₃Fe⁺ with a mixture of $[BrCH_2CH_2NH_3]Br$ and NaH in $CH_3CN₂₀$ it is necessary to consider the possibility that reaction **1** using $[BrCH_2CH_2NH_3]$ Br as the halide catalyst involves deprotonation of $BrCH_2CH_2NH_3^+$ by aziridine to give the reactive $BrCH_2CH_2NH_2$. That the $BrCH_2CH_2NH_3^+$ cation is not essential to reaction **1** is shown by the fact that other halide salts also catalyze the reaction. Thus, it is found that the salts $[Et_4N]Br, [Et_3NH]Br, [(n-Bu)_4N]I, NaBr, and [BrCH₂C H_2CH_2NH_3$]Br also catalyze the formation of Ia from aziridine in the yields **56,64, 52, 53,** and **89%,** respectively. The lower yields are due to the formation of significant amounts of side products such as $Cp(OC)_2$ FeX $(X = Br, I)$ and $[Cp$ essential to reaction 1 is shown by the fact that other halide
salts also catalyze the reaction. Thus, it is found that the salts
[Et₄N]Br, [Et₃NH]Br, [(*n*-Bu)₄N]I, NaBr, and [BrCH₂C-
H₂CH₂NH₃]Br also catal experienced in crystallizing and subsequently isolating the compound when tetra- or trialkylammonium salts were used. One side product, namely $Cp(OC)_2FeBr$, can be separated from the carbene product by washing with Et_2O . When $[Et_4N]Br$ is used, $Cp({OC})_2FeBr$ can actually be isolated from the Et₂O washings and characterized as such. IR $[\nu(CO)]$ $(CHCl₃)$: 2050 vs, 2006 vs cm⁻¹. ¹H NMR (CD₃CN): δ_{Cp} 5.12. ¹³C NMR: δ_{CO} 214.17, δ_{Cp} 86.33.^{23,24} The other side the halide catalyst involves depro-

the halide catalyst involves depro-

the halide catalyst involves depro-

IH₃⁺ by aziridine to give the reactive

the BrCH₂CH₂NH₃⁺ cation is not

shown by the fact that oth

product $[CpFe(CO)₂(HNCH₂CH₂)]⁺$ has been prepared and characterized as the PF_6^- salt (If). In fact, $Cp(OC)_3Fe^+$ reacts rapidly with an equimolar amount of aziridine in $CH₃CN$ in the absence of halide salt, evolving CO gas and forming If as the only isolable product.

Although reactions **1** were commonly performed with equimolar bromide salt, high yields of the carbene product are also obtained when much lower concentrations of Br⁻ are used (see below).

 $[Cp(OC), Fe]^+ + [BrCH₂CH₂NH₄] Br $\xrightarrow{\text{HNCH}_2CH_2 (1 \text{ mmol})}$ Ia$ **CH,CN** (10 ml), **25 "C** 1 mmol 1 mmol 1 mmol **0.5 mmol 1** mmol **0.1 mmol 1 mmol** *0.05* mmol *98.7% 98.0%* 80.0% **74.0%**

This clearly demonstrates that Br⁻ is a catalyst for the reaction and may be used in lower than equimolar concentrations.

The cationic manganese complex $[Cp(OC)₂(ON)Mn]PF₆$ also reacts with an equimolar amount of aziridine in the presence of a bromide salt to form IC in high yield **(85%).** Compound Ic was previously prepared by another method²⁰ though in slightly lower yield. When $[Cp(OC)₂(ON)Mn]PF₆$ reacts with aziridine in $CH₃CN$ solvent in the absence of a halide catalyst, it forms a deep brown solution that decomposes without yielding any well-defined compound.

One CO group in $Cp(OC)_2(Ph_3P)Fe^+$ is converted to the aminooxycarbene Id according to reaction **1.** This reaction, **Scheme I**

however, takes 6 h to complete at 25 °C and consumes excess aziridine. The slowness of this reaction probably allows the partial polymerization²⁵ of aziridine, thus requiring the use of excess aziridine.

In order to compare the reactivity of the CO and CS ligands, the reaction of the mixed carbonyl thiocarbonyl complex cation $Cp(OC)₂(CS)Fe⁺$ with equimolar aziridine and a bromide salt in THF was examined. Here, aziridine attacks preferentially the CS ligand and within **10-12** min gives the aminothiocarbene derivative (Ig), which is isolated as the PF_6^- salt in high yield **(83%).**

$$
Cp(OC)_2Fe-C\equiv S^{\dagger} + HN \left(\frac{Br^{\dagger}}{25 \text{ °C}} \cdot Cp(OC)_2Fe = C \left(\begin{matrix} S \\ N \end{matrix} \right) \right) (2)
$$

Ig was previously prepared in lower yield by another route.¹⁹ This reactivity of the CS ligand toward aziridine demonstrates the higher electrophilicity of the thiocarbonyl carbon in comparison to that of the CO in $Cp(OC)_2(CS)Fe^{+}$; this is a reactivity pattern that has been observed previously in the reactions of the CS ligand in $Cp(OC)_2(CS)Fe^+$ with organic amines and alkoxides.26

A possible mechanism for reactions **1** and **2** involves initial attack by aziridine on the electrophilic carbon of the CO (or CS) ligand to form intermediate **1,** which may then be attacked by Br- ion at an aziridine ring carbon, resulting in ring opening to yield carbamoyl intermediate **2.** Then, **2** could undergo intramolecular cyclization by carbonyl oxygen displacement of Br- ion to give the carbene product, **3** (Scheme I). Neither the acyl adduct **1** nor the intermediate carbamoyl species **2** could be detected in reactions **1** or **2.** Nevertheless, aziridine attack at the carbonyl (or thiocarbonyl) carbon is supported by examples of primary and secondary amine reactions with relatively positive CO or CS ligands in electron-deficient metal-carbonyl (and thiocarbonyl) systems to form carbamoyl derivatives $M-C(=O)NHR$.²⁷ Such reactions have been reported for the complexes used in reactions 1 and 2: $Cp(OC)_3Fe^{+,11}Cp(OC)_2(Ph_3P)Fe^{+,11}Cp- (OC)_3Ru^{+,17}Cp(OC)_2(ON)Mn^{+,28}$ and $Cp(OC)_2(CS)Fe^{+,26}$

Syntheses **of** &Membered Cyclic Aminooxycarbene **Complexes.** Previous attempts²⁰ to generate 6-membered aminooxycarbenes M=COCH₂CH₂CH₂NH⁺ from either Cp- $(OC)_3Fe^+$ or $Cp(OC)_2(ON)Mn^+$ using [BrCH₂CH₂CH₂N- H_3 Br and a strong base were unsuccessful. Now we find that treatment of a cationic carbonyl complex with **2** equiv of azetidine (HNCH2CH2CH2) and equimolar [BrCH2CH2C-H₂NH₃]Br in CH₃CN solvent leads to the isolation of crystals relatively positive CO o
metal-carbonyl (and this
oyl derivatives M—C(=
een reported for the comp
Cp(OC)₃Fe⁺,¹¹ Cp(OC
Cp(OC)₂(ON)Mn⁺,²⁸ and
one attempts²⁰ to generat
M=COCH₂CH₂CH₂Nl
Cp(OC)₂(ON)Mn⁺

- **(26) Busetto, L.; Graziani, M.; Belluco, U.** *Inorg. Chem.* **1971,** *10,* **78. (27) Angelici, R. J.** *Acc. Chem. Res.* **1972,** *5,* **335.**
-
- **(28) Busetto, L.; Palazzi, A,; Pietropaolo, D.; Dolcetti, G. J.** *J. Orgunomer. Chem.* **1974, 66, 453.**

⁽²²⁾ McCormick, F. B.; Angelici, R. J. *Inorg. Chem.* **1981,** *20,* **1118. (23) Gansow, 0. A.; Schexnayder, D. A.; Kimura, B. Y.** *J. Am. Chem. Soc.* **1972, 94, 3406.**

⁽²⁴⁾ Sloan, T. E.; Wojcicki, A. *Inorg. Chem.* **1968, 7, 1268.**

⁽²⁵⁾ Dermer, 0. C.; Ham, G. E. 'Ethyleneimine and Other Aziridines"; Academic Press: New York, 1969.

of &membered aminooxycarbenes (11) in 52-5496 *(eq* 3) yields.

However, unlike the reactions of aziridine (eq l), those of azetidine do not involve ring opening of the 4-membered heterocycle. Thus, the reaction of $Cp({\rm OC})_3Fe^+$ with equimolar $[BrCH₂CH₂NH₃]$ Br in the presence of excess azetidine results in the formation of the 5-membered aminooxycarbene Ia instead of IIa. Moreover, compounds I1 are also obtained by treating the $Cp(CO)₂LM⁺$ (M = Fe, Mn and L = CO, NO, respectively) compounds with $[BrCH_2CH_2CH_2NH_3]Br$ in oxirane at $0 °C$, where $BrCH₂CH₂O⁻$ acts as the base. These results indicate that the 3-bromopropylamine is the reactant that is incorporated in the 6-membered carbene ligand, not azetidine. A, $M = Fe$, $L = CO$

(3)
 $M = Mn$, $L = NO$

(3)
 \neq (4), those of
 \therefore M = Mn, $L = NO$

(3)
 \neq (4), those of
 \therefore the 4-membered
 \neq with equimolar
 \therefore Sexualistic results
 \therefore Sexuality (8) $M-C=O$
 \therefore M = C=O

This difference in reactivity between aziridine and azetidine in the presence of haloalkylamine hydrobromide salts may be understood, first, in terms of the increasing basicities²⁹ of the cyclic and acyclic amines in the order $HNCH_2CH_2 (pK_a =$ 8.04) < $H_2NCH_2CH_2Br$ (p $K_a = 8.43$) < $H_2NCH_2CH_2CH_2Br$ $(pK_a = 8.93)$ < HNCH₂CH₂CH₂ ($pK_a = 11.29$). Azetidine, being the strongest base, initiates the reaction between haloammonium salts $[Br(CH₂)_nNH₃]$ Br and M- $-C=O⁺$ by deprotonating the ammonium nitrogen in the same manner as proposed for reactions of $[BrCH_2CH_2NH_3]Br$ with cationic carbonyl complexes in the presence of NaH.²⁰ Second, the lower strain energy³⁰ of azetidine makes it less susceptible to ring opening as compared with aziridine. Third, the imine nitrogen of aziridine is more nucleophilic than would be predicted from its base strength, 31 thus making attack at the CO carbon atom in $M-C=O^+$ more favorable. ss of Fe, Mn, and Ru

Inorgy

mooxycarbenes (II) in 52-54% (eq 3) yields.

Scheme II

corrections (11) in 52-54% (eq 3) yields.
 $\sum_{k=1}^{N} C_k$ cheme II
 $\sum_{k=1}^{N} C_k$ cheme II
 $\sum_{k=1}^{N} C_k$ chement
 $\sum_{k=1}^{N} C_k$ cor zetidine do not involve ring opening of the 4-membered
petrecocycle. Thus, the reactor of Cp(OC), Fe⁺ with equimolar
hFCH₂CH₃NH₃JBr in the presence of excess azetidine results
in the formation of the 5-membered am

As pointed out above, the proposed carbamoyl intermediate **2** (Scheme I) could not be detected. However, in the case of reaction 3, the formation of the intermediate carbamoyl derivative, i.e. Cp(OC)₂Fe-C(=0)NHCH₂CH₂CH₂Br, was observed in an IR spectrum run immediately after mixing the reactants $Cp(OC)$ ₃Fe⁺, [BrCH₂CH₂CH₂NH₃]Br, and H $NCH_2CH_2CH_2$ in CH₃CN. This IR spectrum shows two strong $v(\overline{CO})$ absorptions at 2020 and 1965 cm⁻¹ and a medium-strong band at 1597 cm⁻¹ due to ν (C=O) of the carbamoyl group. As the reaction progresses, the intensities of the acyl carbonyl bands decrease while two new strong absorptions at high wavenumbers (2058 and 2012 cm⁻¹) for CpFe(CO)₂(COCH₂CH₂CH₂NH)⁺</sup> grow. An additional piece of evidence for the intermediacy of the carbamoyl complex is obtained by acidifying with CF_3SO_3H a part of the reaction mixture containing the carbamoyl species; immediately $Cp(OC)_{3}Fe^{+}$ is regenerated, as expected,¹¹ according to

 $ICp(OC)_3Fe1CF_3SO_3$ + $BrCH_2CH_2CH_2NH_2$ (4)

Scheme I1 (A) \bigcirc + $Br^- \rightleftarrows$ $BrCH_2CH_2O^-$

Reactions of Oxiranes with Metal Carbonyl Cations. Syntheses of 5-Membered Cyclic Dioxycarbene Complexes. In the presence of bromide ion, oxirane reacts with a CO ligand in each of the following cationic carbonyl complexes at 0° C in 1-2 mL of 2-bromoethanol to form air-stable 5-membered cyclic dioxycarbene complexes (111). IIIa and IIIb are obtained in high yields (IIIa, 81%; IIIb, 73%) as crystalline $PF_6^$ salts from the corresponding $[Cp(OC)₃M]CF₃SO₃ compounds;$ KPF_6 is used for the anion exchange.

$$
M - C \equiv 0^+ + 0 \sqrt{\frac{Br^2}{0.9C}} \quad M = C \begin{pmatrix} 0 \\ 0 \end{pmatrix}
$$

IIIa, M = Cp(OC), Fe
b, M = Cp(OC), Ru

c, M = Cp(OC)(ON)Mn d, M = Cp(OC)(Ph,P)Fe

When 3-bromopropanol is used as the solvent in lieu of 2-bromoethanol in reaction 5, IIIa is isolated in yields (80%) comparable to those obtained when $BrCH_2CH_2OH$ is employed in the reaction. When oxirane is used both as reactant and solvent, the dioxycarbene IIIa is also formed but in lower yields (<30%). The reaction of $Cp(OC)_3Fe^+$ with oxirane in the presence of NaCl and 2-chloroethanol also leads to the isolation of IIIa in 60% yield. When NaI is employed in the reaction 5, an 18% yield of the carbene complex IIIa is obtained; the formation of a significant amount of $Cp(OC)₂FeI$ is responsible for the reduced yield. It is important to note that in the absence of a halide ion, oxirane alone or a mixture of oxirane plus 2-bromoethanol fails to convert the carbonyl group into the carbene ligand. These results, thus, demonstrate that (i) reaction 5 is catalyzed by a halide ion and (ii) it is the oxirane rather than the solvent that is involved in the formation of the carbene ligand. These observations are relevant to mechanistic aspects of the reaction discussed below.

The $Et₂O$ washings obtained during the workup of IIIa prepared according to eq *5* using NaBr are always brown in color. Removal of the $Et₂O$ followed by fractional crystallization with CH_2Cl_2 -pentane at -20 °C produces two kinds of crystalline compounds. The first is obtained as dark brown long needles characterized by IR and NMR spectra as Cp- $(OC)_2$ FeBr. IR [ν (CO)] (CHCl₃): 2050 vs, 2006 cm⁻¹. ¹H The second crystals are the bromonium salt $[Cp(OC)₂Fe-$ Br-Fe(CO)2Cp]Br. IR [u(CO)]: 2069 vs, **2027** vs cm-', (no PF_6^- band). ¹H NMR: δ_{Cp} 5.02.^{32,33} NMR (CD₃CN): δ_{Cp} 5.12. ¹³C NMR: δ_{CO} 214.17, δ_{Cp} 86.33.

Oxirane is also observed to react with one CO group in each of the cationic complexes $Cp(OC)_2(Ph_3P)Fe^+$ and Cp- $(OC)_2(ON)Mn^+$ to form the corresponding cyclic dioxycarbene compounds IIIc,d in yields of 80 and 84%, respectively.

⁽²⁹⁾ Perrin, D. D. 'Dissociation Constants of Organic Bases in **Aqueous** Solutions"; Butterworths: **London,** 1965.

⁽³⁰⁾ Moore, A. J. 'Heterocyclic Compounds"; Wcissbexger, A. **Ed.;** Interscience: **New** York, 1964; Part **11,** p 885.

⁽³¹⁾ **Fedor, L.** R.; Bruice, **T.** C.; Kirk, K. **L.;** Meinwald, **J.** *J. Am. Chem. SOC.* **1966,** 88, 108.

⁽³²⁾ Fischer, E. 0.; Moser, **E.** *J. Orgonomet. Chem.* **1965,** 3, 16.

⁽³³⁾ Haines, R. J.; **du** Preez, **A. L.** *J. Chem. SOC.* A **1970,** 2341.

The preparation of IIId (yield 80%) was also carried out in BrCH₂CH₂CH₂OH instead of BrCH₂CH₂OH.

Two mechanisms for the reaction of oxirane with the carbonyl ligand may be considered (Scheme 11). The first (A), involving initial Br- attack on oxirane to produce the haloalkoxide ion, is supported by other studies in which the halide ion acts as a catalyst to promote ring opening in certain organic reactions.^{34,35} As noted earlier, the bromoalkoxide ion **4** can act as a nucleophile and attack the electrophilic CO ligand in cationic carbonyl complexes to form the bromoalkoxy carbonyl intermediate **6.20** This then undergoes intramolecular cyclization to yield dioxycarbene compound **7.** The alternative mechanism (B) involves the formation of the adduct **5** and is analogous to that suggested for the aziridine reaction; however, oxirane is less basic than aziridine and would form a less stable adduct **5** with CO. All attempts to detect intermediate *6* during the reaction failed. However, it is found that when IIIa is treated with equimolar NaI in acetone solution at room temperature, a mixture of $Cp(OC)$. FeI and $Cp(OC)$ ₂Fe-C- $(=0)$ OCH₂CH₂I is formed. The alkoxy carbonyl compound was characterized by its IR and NMR spectra. IR $[\nu(CO)]$ (CH_2Cl_2) : 2038 vs, 1985 vs, 1640 ms cm⁻¹ (acyl carbonyl). Though the pure compound could not be isolated free from other species, its spectral data compare well with those of $Cp(OC)_2Fe-C(=O)CH_2CH_2CH_2Cl^{36}$ and $(OC)_5Mn-C (=0)$ OCH₂CH₂I.³⁷ ¹H NMR (CD₃CN): δ_{Cp} 4.88, δ_{OCH_2} 3.68 (t), δ_{ICH_2} 3.24 (t).

If the reaction of $Cp(OC)$ ₃Fe⁺ with excess oxirane is allowed to proceed for more than 24 h or if oxirane vapors are passed through a solution of IIIa in $BrCH_2CH_2OH$ at 50–60 °C in the presence of NaBr for 2 h, the bis(dioxycarbene) derivative $[Cp(OC)Fe(\overline{COCH_2CH_2O})_2]PF_6$ (IIIe) is obtained in 26% yield. Similarly, by extending the reaction time (overnight, 16 h) one can prepare Cp(ON)Mn(COCH₂CH₂O)₂]PF₆ (IIIf) from $[C_p(OC)(NO)M_n(COCH_2CH_2O)]PF_6$. IIIf was also prepared earlier²⁰ by treatment of $[Cp(OC)₂(ON)Mn]PF₆$ with $BrCH_2CH_2OH$ and NaH, though the mono(dioxycarbene) compound IIIc could not be isolated. Most likely, under the exothermic reaction conditions used in the BrC- H_2CH_2OH and NaH system,²⁰ both CO ligands in Cp- $(\overline{OC})_2(\overline{ON})Mn^+$ were converted into dioxycarbenes. When the reaction of $Cp(OC)_{3}Fe^{+}$ with BrCH₂CH₂OH and NaH is repeated according to the published method²⁰ but if the reaction vessel is not cooled, IR and NMR spectra of the product mixture show that both the mono(dioxycarbene) IIIa and bis(dioxycarbene) IIIe are formed. Relative intensities of the carbonyl bands and NMR signals indicate that IIIe is the principal constituent of the mixture. 640 ms cm⁻¹ (acyl carbonyl).
 δ_{OCH_2} 3.68 (t), δ_{ICH_2} 3.24 (t),

uld not be isolated free from

compare well with those of

CH₂Cl³⁶ and (OC)₅Mn—C-

with excess oxirane is allowed

r if oxirane vapors o prepared earlier²⁰ by treatment c
th BrCH₂CH₂OH and NaH, t
rbene) compound IIIc could not
der the exothermic reaction con
 $2CH_2OH$ and NaH system,²⁰ b
 $2(ON)Mn^+$ were converted in
repeated according to the publis

The reaction of other oxiranes such as styrene oxide or 1,2-epoxybutane with $Cp(OC)_3Fe^+$ or $Cp(OC)_2(ON)Mn^+$ in the presence of 2-bromoethanol and the Br⁻ ion results in the isolation of IIIa and IIIc instead of the desired substituted dioxycarbene products. In the presence of halide ions, oxiranes

RCHCH20 also act as bases in the dehydrohalogenation of β -haloalcohols.³⁵ The basic behavior of oxirane is also demonstrated by the isolation of 5- and 6-membered aminooxycarbene derivatives Ie and IIa from the reaction of Cp- $(OC)_3Fe^+$ and $[Br(CH_2)_nNH_3]Br$ $(n = 2$ or 3) in excess oxirane. Presumably, in these reactions the haloalkoxide ion **(4,** Scheme 11) produced by halide attack on the oxirane ring acts as a base. 35

Reactions of Thiirane. In the presence of Br⁻ ion, thiirane does not react with $Cp(OC)_{3}Fe^{+}$ and $Cp(OC)_{2}(ON)Mn^{+}$ to form cyclic oxythiocarbene $M = \overbrace{C OCH_2CH_2S^+}$ complexes; similarly, the reaction between the mixed thiocarbonyl cation $Cp(OC)$ ₂(CS)Fe⁺ and oxirane fails to give an oxythiocarbene derivative. The known instability of acyclic analogues such as $\text{Cp}(\text{OC})_2\text{Fe}$ [=C(SMe)(OMe)]⁺²¹ and of PtCl(PPh₃)₂[C-(SMe)(OMe)]+ **38** suggests that the cyclic oxythiocarbene derivative may be unstable. However, treatment of Cp- $(OC)_{2}(CS)Fe^+$ with thiirane in the presence of NaBr in $CH₃CN$ solvent at room temperature does produce the expected dithiocarbene complex IV in 75% yield:

$$
Cp(OC)_2Fe-C\equiv S^{\dagger} + S\sqrt{\frac{Br}{25\cdot C}} \cdot Cp(OC)_2Fe=C\left(\frac{S}{S}\right)^{\dagger} \tag{6}
$$

A mechanism similar to that described for the oxirane reactions (Scheme 11) may be suggested for reaction 6.

Spectroscopic Properties. Selected IR and ¹H and ¹³C NMR data for all the complexes are given in Tables 1-111, respectively. The dicarbonyl complexes, as expected, exhibit two very strong carbonyl absorptions of equal intensity in the regions $2084-2058$ and $2010-2026$ cm⁻¹; the monocarbonyl complexes show only one carbonyl band; the compounds containing the nitrosyl ligand (Ic, IIb, IIIc,f) have a $\nu(NO)$ band at \sim 1800 cm⁻¹. Apart from the carbonyl bands, the aminooxycarbene compounds also have two other characteristic bands, one occurring at $\sim 1605 \text{ cm}^{-1}$ and the other in the range bands, one occurring at $\sim 1605 \text{ cm}^{-1}$ and the other in the range 1570-1530 cm-l. The high-frequency band that is weaker than the other is assigned to the NH deformation and the other to the C-N stretching vibration. These assignments are made by comparing IR spectra of the aminooxycarbene derivatives with that of the aziridine-substituted compound, If, which shows an NH deformation band at \sim 1605 cm⁻¹ but no band at \sim 1530 cm⁻¹. An increase in the value of the ν (CN) band by 20-30 cm-' is observed as one passes from the 5- to the 6-membered carbene ring. Similarly, $\nu(CN)$ of the 5-membered oxazoline $R - C = NCH_2CH_2O$ (1652 cm⁻¹) is somewhat lower than that (1665 cm^{-1}) of the corresponding 6membered oxazine $R-C=NCH_2CH_2CH_2O^3$ $\frac{1003 \text{ cm}}{21033 \text{ cm}^2}$

By comparing $\nu(CO)$ force constants $k(CO)$ (Table I) as a function of the N, 0, or **^S**atoms bonded to the carbene carbon in the series of complexes $Cp(OC)_2Fe=$ $\overline{CZCH_2CH_2Y^+}$ (where *Z*, *Y* = 0, 0; *S*, *S*; 0, *NH*; *S*, *NH*; NH, NH) and $\text{Cp}(\text{OC})_2\text{Ru}=\text{COCH}_2\text{CH}_2\text{Y}^+$ and $\text{Cp}(\text{OC})$ - $(ON)Mn=COCH₂CH₂Y⁺$ (where Y = O, NH), one notes that the $k(CO)$ values decrease in the order (Z, Y) O, O > **S, S** > 0, NH > **S,** NH > NH, NH. This trend follows the increasing electron-donating ability of *Z* and Y.I9 Probably both the σ - and π -bonding abilities of the heteroatoms are important in determining the trend. **I i** $\frac{1}{2}$ is $\frac{1}{2}$ in $\frac{1}{2}$ in by 20-30 cm⁻¹ is observed as one passes from the 5- to the
6-membered caractering. Similarly, ν (CN) of the 5-mem-
bered oxazolne R- \overline{C} =NCH₂CH₂O (1652 cm⁻¹) is somewhat lower than that (1665 cm⁻¹) of the

In comparison to acyclic compounds, *k(C0)* values of **5** membered cyclic carbenes are higher as may be noted in the following pairs of examples $(k(CO))$ values in mdyn/Å are given in parentheses): $M=C(OMe)₂⁺ (16.85)^{12,21}$ and M= $COCH_2CH_2O^+$ (17.14); M= $C(SMe)_2^+$ (16.77)^{19,21} and $M = \overline{CSCH_2CH_2S}$ + (16.88); M=C(OMe)(NH₂)⁺ (16.73)²² $\frac{1}{2}$ NH) and Cp(OC)₂Ru=CO

Mn=COCH₂CH₂Y⁺ (where COCH₂CH₂Y⁺ (where k (CO) values decrease

> O, NH > S, NH > NH,

asing electron-donating abili

the σ - and π -bonding abili

the σ - and π -bonding abili
 irs c
enthe
C and M= $\overline{\text{COCH}_2\text{CH}_2\text{NH}}$ + (16.86); M=C(SMe)(NMe₂)⁺ $(16.54)^{19}$ and M=CSCH₂CH₂NH⁺ (16.74), where M =

⁽³⁸⁾ Dobrzynski, E. D.; Angelici, R. J. *Inorg. Chem.* **1975,** *14,* 1513. (39) Hiinig, S.; Galdern, **L.** *Chem. Ber.* **1961,** *96,* 3105.

Carbene Complexes of Fe, **Mn,** and Ru

Table I. Important Infrared Bands (cm⁻¹) of the Compounds in CH₂Cl₂

a In mdyn/A. Calculated by the method in: Cotton F. **A.;** Kraihanzel, C. S. *J. Am. Chem. Soc.* **1962,84,4432.** * u(N0) band. Reference **19.**

Table **II.** ¹H NMR Data for the Carbene Complexes^a

compd	C_{P}	$-OCH -$	$-NCH$, $-$	NH and/or other
Ia	5.27	4.62(t)	3.70(t)	9.48^{b}
Ib	5.63	4.64(t)	3.72(t)	9.04 ^b
Ic	5.47	4.66(t)	3.73(t)	9.14 ^b
Ιd	4.78 _(d)	4.0(m)	3.33(m)	8.66, b 7.46 (m) ^c
Ie	5.28	4.62 (t)	3.71(t)	d
If	5.29			1.3. ^b 2.1 ^e
Ig	5.26	4.45 (t) ^{\bar{t}}	3.69(t)	d
IIa	5.21	4.34(t)	3.30(m)	9.04, $\frac{b}{2}$ 2.13 (m) ^g
IIb	5.42	4.36(t)	3.30(m)	8.60^{b} 2.10 (m) ^g
IIIa	5.39	4.74		
Шь	5.71	4.76		
III c	5.59	4.78		
HId	4.90(d)	4.20 (m)		7.50 (m) c
IIIe	5.06	4.62 (m)		
Шſ	5.35	4.66		
IV	5.40	3.90^{f}		

^{*a*} In CD₃CN solvent; chemical shifts (δ) downfield from Me₄Si; m = multiplet, d = doublet, t = triplet. ^{*b*} NH signals. *^c* PPh₃ signals. d NH signal not observed. e Ring -CH₂- signal in coordinated aziridine. $f - SCH_2$ - signal. \ddot{g} -CH₂- signal.

 $Cp(OC)₂Fe$. This indicates that the acyclic carbenes are better donors (lower π -acceptor/ σ -donor ratio) than the 5-membered cyclic ones.

In the $\text{Cp}(\text{OC})_2\text{FeL}^+$ complexes the electronic properties of the aminooxycarbene ligand L = $\text{COCH}_2\text{CH}_2\text{NH}$ [k(CO) $Cp(OC)LFe=COCH₂CH₂O⁺$, the π -acceptor/ σ -donor ratio of the L ligand decreases in the order $L = \text{C}OCH_2CH_2O$ (16.28) > PPh₃ (16.04). In the Cp(OC)₂Fe=CO(CH₂)_nNH⁺ = 16.86] are similar to those of L = PPh₃ (16.70).⁴⁰ In

complexes, the carbonyl stretching force constants decrease as *n* increases from 2 to **3. A** similar trend has been observed in the case of cyclic dithio- and diaminocarbene complexes and $Cp(OC)$ ₂Fe=CNH- $(CH₂)_nNH⁺$ (n = 2 and 3) and has been explained in terms of different ring conformations of the *5-* and 6-membered cyclic carbene ligands.²¹ Better π overlap between the heteroatoms and the carbene carbon in 6-membered rings causes a decrease in the k(C0) value as compared to that in *5* membered ring carbene compounds. $Cp(OC)$ ₂Fe= $\overline{CS(CH_2)}$ ₂S⁺

ton F. A.; Kraihanzel, C. S. J. Am. Chem. Soc. 1962, 84, 4432. $\frac{b}{\mu}$
 $\frac{1}{b}$
 \frac 'H **NMR** spectra of complexes containing 5-membered aminooxycarbene ligands show $-OCH₂$ - triplets (\sim 4.5 ppm) 1 ppm downfield from triplets **(-3.5** ppm) with additional fine structure for the NCH₂ groups. Splitting of the OCH₂ groups follows a second-order AA'BB' pattern. The additional splitting of the $NCH₂$ protons is due to coupling between the NH and $-NCH₂$ protons; this has been proven by spin decoupling the NH protons, which makes the splitting pattern of the NCH, protons that expected for an ideal AA'BB' spin system. The 6-membered carbene compounds IIa and b exhibit three sets of methylene proton signals at **4.3** ppm (t, $-OCH_2$ -), 3.3 ppm (m, $-NCH_2$ -), and 2.1 ppm (m, $-CH_2$); the splitting of the signal at **3.3** ppm is again more complicated due to NH coupling. The broad amine proton signals occur at low field $({\sim}9)$.

In all the mono(dioxycarbene) compounds one singlet methylene proton signal is observed at \sim 4.7 ppm, which is at slightly lower field than the $-OCH₂-$ resonance in the corresponding aminooxycarbene derivatives. The carbene and Cp proton resonances in Cp(OC)(Ph₃P)Fe=COCH₂CH₂Y⁺ $(Y = NH, O)$ occur at higher field than in the corresponding \overline{P} $Cp(OC)_2Fe=COCH_2CH_2Y^+$, indicating the stronger donor character of PPh₃ than CO. Moreover, in Cp(OC)(Ph₃P)-

Table III. ¹³C NMR Data for the Carbene Complexes^a

a In CD₃CN solvent; chemical shifts in δ ; d = doublet, m = multiplet. **b** PPh, carbon signal. **c** Ring $-CH_2$ - in coordinated aziridine. d -SCH₂- signal. e -CH₂- signal.

 F_{e} $\overline{\text{COCH}_2\text{CH}_2\text{Y}}$ ⁺, the methylene proton resonances appear as multiplets as a result of chirality at the iron center when the $-CH_2$ - protons of the carbene ligand become nonequivalent.⁴¹ In the $Cp(OC)_2Fe = CZCH_2CH_2NH^+$ complexes, though the $-NCH₂$ resonances appear at almost the same position, the $-ZCH_2$ - signal shifts to higher field as Z changes from O to S. Similarly, the $-CH_2$ - resonance for Cp- $(OC)_2Fe=CSCH_2CH_2S^+$ occurs at higher field than that of the analogous dioxycarbene derivative. The same trend is observed if one compares the $-CH_2$ - proton signal position in acyclic dithio- and dioxycarbene compounds $Cp(OC)_2Fe=C (ZMe)₂⁺ (Z = S or O)²¹$ The $-CH₂$ - singlet signal in the ¹H NMR spectrum of the dithiocarbene complex [Cp- $(OC)_2Fe=CSCH_2CH_2S]PF_6$ in $(CD_3)_2CO$ does not change even at **-80** 0C.42 $2C1121$, the metallycic probability at
s as a result of chirality at
protons of the carbene ligan
the Cp(OC)₂Fe=CZCH₂-
-NCH₂- resonances appea
-ZCH₂- signal shifts to hig
S. Similarly, the -CH₂-
-SSCH₂CH₂S

Conclusive evidence for the presence of carbene ligands in these complexes is the very low-field **(206-295** ppm) carbene ¹³C NMR signal (Table III). The position of the carbene ¹³C resonance in the cationic complexes containing $= CZ(CH_2)_nY$ ligands can be broadly classified according to the heteroatoms in the carbene ligands: (i) $Y = Z = NH$ and $n = 2$ or 3, values are at the highest field²¹ in the range δ_{carbone} 190-200; (ii) Y $= NH$, $Z = \overline{O}$, and $n = 2$ or 3, values lie in the range δ_{carbon} 206-234; (iii) $Z = Y = O$ and $n = 2$, values lie in the range δ_{carbone} 240-260; (iv) $Y = Z = S$ and $n = 2$ or $3,^{21}$ values appear at the lowest field in the range δ_{carbone} 283-295. For $\text{Cp}(\text{CO})_2\text{Fe}=\text{C}(\text{ZR})(\text{Y}\text{R})^+$ complexes containing acyclic carbene ligands, δ_{carbone} moved to lower field as Z and Y changed in the order Z = O, Y = NR (δ 220–227) < Z = Y $=$ O (δ 250) $\lt Z = Y = S$ (δ 300).^{12,21} When PPh₃ is sub-

stituted for one of the CO groups in $Cp(OC)_2Fe=$ COCH₂CH₂Y⁺ (Y = NH, O), δ_{carbon} shifts to lower field by about **12-13** ppm; a similar trend was noted for Cp(0C)- $LFe=C(SMe)₂ + 43$ and $Cp(ON)LMn=COCH₂CH₂NH⁺.²⁰$

As one passes from iron to ruthenium, the ^{13}C resonances (Table 111) of the carbene and carbonyl ligands move to higher field; this upfield shift **on** descending the group is typical of other metal carbene⁴⁴ and carbonyl complexes.⁴⁵ The ¹³C chemical shifts δ_{CO} of the CO ligands in the same types of complexes shift much less widely than δ_{carbene} , but they do show a trend of shifting downfield as a function of the heteroatoms in the order $O, N \sim S, N > O, O \sim S, S$. It appears that slight changes in the electronic environment at the carbene carbon cause greater shifts in δ_{carbone} than in δ_{CO} . In the cases of Id and IIId, which contain a Ph_3P ligand, the carbene carbon signals appear as doublets; the 13C0 signal in IIId is also split, and these splittings are due to coupling with the $3^{1}P$ of the phosphine ligand. - in coordinated aziridine.

CO groups in $Cp(OC)_2Fe \rightarrow$
 δ_{carbone} shifts to lower field by

trend was noted for $Cp(OC)$ -

N)LMn=COCH₂CH₂NH⁺.²⁰

carbonyl ligands move to higher

centing the group is typical of

rb

Registry No. Ia, 69532-52-1; Ib, 84433-09-0; IC, 79664-1 1-2; Id, **84433-1 1-4; Ie, 76136-60-2; If, 90858-53-0; Ig, 69532-54-3; IIa, 90858-55-2; IIb, 90858-57-4; IIIa, 79664-09-8; IIIb, 84433-14-7; IIIc, 84433-12-5; IIId, 84433-16-9; IIIe, 90858-59-6; IIIf, 79664-14-5; IV, 76 136-38-4;** [**Cp(OC),Fe] CF3S03, 76 136-47-5;** [**BrCH2CH2NH3] Br,** 2576-47-8; [BrCH₂CH₂CH₂NH₃]Br, 5003-71-4; [Et₃NH]Br, 636-**60-9; [Cp(OC)2(0N)Mn]PF6, 3 1921 -90-** 1; **[Cp(OC),(Ph,P)Fe]BF,,** 32614-25-8; $[\text{Cp}(\text{OC})_2(\text{Ph}_3\text{P})\text{Fe}] \text{CF}_3\text{SO}_3$, 90858-61-0; $[\text{Cp}(\text{OC})_2]$ (CS)Fe]CF₃SO₃, 60817-01-8; HNCH₂CH₂CH₂, 503-29-7; BrCH₂-**CH20H, 540-51-2; NaBr, 7647-15-6; NaCI, 7647-14-5; NaI, 7681-** 82-5; Cp₂(OC)₄Fe₂, 12154-95-9; NOPF₆, 16921-91-8; aziridine, **151-56-4; oxirane, 75-21-8; 3-bromopropanol, 627-18-9; thiirane,** 70-4; [Cp(OC)₃Ru]PF₆, 31741-71-6; [Cp(OC)₃Ru]CF₃SO₃, 90858-**420- 12-2.**

- (43) McCormick, F. **B.;** Angelici, **R. J.** *J. Organomet. Chem. 1981, 205,* 79.
- (44) Chisholm, M. H.; Godleski, *S. Prog. Inorg. Chem.* **1976,** *20,* 299. **(45) Todd, J.;** Wilkinson, **J.** R. *J.* **Organomet. Chem. 1974, 77, 1.**
-

⁽⁴¹⁾ Faller, **J.** W.; **Johnson, B. V.;** Schaeffer, C. D. **Jr.** *J. Am. Chem.* **SOC. 1976,** 98, 1395.

⁽⁴²⁾ Matachek, **J.** R.; Angelici, R. **J.,** unpublished work.